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Choices in the harmonic balance technique 

N MacDonald 
Physics and Astronomy, University of Glasgow, Glasgow G12 SQQ, UK 

Received 10 June 1993 

Abstract. We apply the harmonic balance technique in low orders to three types ofoscillator 
model. For three equations of the van der Pol type with rational nonlinear terms, used to 
model electronic oscillaton, we e m i n e  the choice between: (a j  rationalizing before 
expanding In harmonics, and (b) obtaining Fourier coefficients of nohlinear terms. Alterna- 
tive (b) is shown to be more accurate, in first order, for the models of Scott-Murata and 
of Walker and Connelly, which apply w circuits with an inverse tangent nonlinear compo- 
nent. For these equations, in the case of alternative (a), we find acceptable dependene of 
the secandader corrections on the bifurcation parameter. When the harmonic balance 
methodis used to set up a semi-classical quantization treatment of a nonlinear conservative 
oscillator, values of energies are slightly improved by the use of alternative (b). For consem- 
ative oscillators with cubic or lifth power forces, we compare the standard method using 
the acceleration equation with an alternative using the energy equation. The 6rs t  is shown 
to be more accurate in low order. 

1. Introduction: choices in harmonic halance 

The standard harmonic balance method for approximating periodic solutions p of a 
nonlinear ordinary differential equation involves the following steps: 

(I) Select a trial solution which is a truncated Fourier series, either with terms 
a. cos(npt) alone, n up to N ,  or with both sine and cosine terms, as appropriate. Insert 
this solution in the equation, and ignore any higher harmonics (terms with n > N )  
generated by the nonlinear terms. ~ ~ 

(11) Set equal to zero the coefficients of the retained harmonics, thus obtaining a 
set of coupled nonlinear equations for the frequency p and the amplitudes a, in the 
trial solution. Solve these equations. 

The method has a long history, but still finds fresh physical and engineering applica- 
tions. It has recently been used to interpret the behaviour of new oscillator circuits 111, 
and to give a starting point for quasi-classical calculations of bound states [Z]. 

Here we are concerned solely with the use of this method in low order, to obtain 
some understanding of how the frequency and amplitude of an autonomous oscillation 
depend on parameters. We do not look at its use at high order as a means of numerical 
approximation to solutions for autonomous or forced oscillations [3]. Further we are 
not ,considering the complications that arise 14, 51 when the restoring force is of mixed 
parity. 

Even in this restricted use of the method, altemative procedures are possible. For 
example, one may use elliptic functions rather than cosines [6]. This is more accurate 
for conservative oscillators with forces expanded as powers of the displacement, which 
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6368 N MacDonald 

is not surprising when we note that the exact solution of a pure cubic equation 

d2x/d?+kx3=0 (1) 

is an elliptic function. Rational trial solutions, for example the form acos(pt)/ 
(l+bcos(Zpt)), are proposed in [7-91. These have been exploited in recent work on 
some Hamiltonian systems in dynamical astronomy [lo, 111. 

We shall examine two other choices within the harmonic balance method. The first 
applies to equations in which the nonlinear terms contain ratios of polynomials; it 
is the choice between preliminary rationalization or obtaining Fourier coefficients by 
integration. Consider the equation of van der Pol type 

d2x/d?+x+q f(x) dx/dt=O (2) 

x = a  cos(pt). 

withf(x) an even function, and the lowest-order approximation 

Three different equations in whichf(x) has a denominator depending on 1 have been 
proposed, by Scott [I21 (also by Murata et a1 113, 14]), by Walker and Connelly 1151 
and by Ceschia and Zecchin 1161, as models of oscillating devices for which the van 
der Pol equation is inadequate. An example is the ECAM device (emitter-coupled 
astable multivibrator) for which the voltage can be represented as an inverse tangent 
of the current. We shall denote these as the Scott equation,wc equation and cz equation 
for brevity. The nonlinear functionsf(x) for thr first two can be expressed as 

Nl -g/(h?+ 1)) (3) 
where h = l ,  g > l  for the Scott equation, and h=-I, g < l  for the wcequation. The 
singularity in the w c  equation means that only the range -1 < x < l  is considered. 

Scott [12] comments that for large q the slow sections of the curve of x(t) ,  using 
(2), are concave towards the time axis, while practical relaxation oscillators generate 
waveforms in which the slow sections are exponential decays, concave outwards. His 
equation is designed to simulate this behaviour. 

In his analysis of the w c  equation, Mickens [l]  applies harmonic balance in the 
lowest order, as well as other techniques. He first rationalizes the equation, multiplying 
throughout by a factor 2- 1, and then introduces the trial solution a cos(pt). Results 
obtained in this manner need not be identical with those obtained by performing the 
integral which gives the Fourier sine coefficient of the nonlinear term, with this same 
trial solution 

Jozrf(a cos(pt))(,-pa sin(pt) sin&)) d ( p t ) .  (4) 

We maintain that if the integral can be analytically evaluated, its use is to be preferred. 
It explicitly follows the description we have given of step I in the method. The strength 
of the harmonic balance method, at low orders, is not in giving close approximations 
to solutions, but rather in approximating such averaged quantities as frequency and 
mean amplitude. The integration performs an averaging process. 

The motivation for the pre-rationalization in [I] can be found in the way Mickens 
[ 171 expresses conditions for the applicability of harmonic balance. He limits the method 
to differential equations in which each term is a product of odd total power, such as, 
for example, 2, 1 dx/dt, x(dx/dt)2 or 1 d2x/dt2. This is to exclude the possibility of 
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generating constant terms or cos(2pt) terms, which lead to difficulties [4, .5]. All this 
means, however, for the application of integration is that we have to verify that the 
unwanted Fourier components are indeed absent. We have done this in each case 
studied. 

Mickens' rationalization procedure is an unambiguous way of performing an 
approximation by truncated Fourier expansion. So we have to compare the results of 
both methods before rejecting rationalization. As we shall show, the integration method 
agrees with values for the amplitude of the stable limit cycle obtained, using other 
techniques, by Scott [12] and Murata ef  a1 [ 141 for the Scott equation, and by Walker 
and Connelly 1151 for their equation, but the rationalization method does not. For the 
wc equation the amplitude agrees better with numerical results in [l] if integration is 
used. 

We shall also compare the two methods for a conservative oscillator example from 
[Z]. Here the quasi-classical energies obtained by the integration method are marginally 
better, in comparisons with exact numerical solutions. 

The second choice comes into play for a conservative system, in which the differential 
equation has a constant lirst integral-which we shall denote as energy. We can make 
use of the energy to sharpen the choice between two methods. If two harmonic balance 
methods are applied to the differential equation, at the same order of approximation, 
the preferred one should be the one which leaves smaller fluctuations in the energy. 
This argument is used in the astronomical applications [ 10, 111 as a reason to prefer a 
rational trial solution. In appendix 1 we compare standard and rational harmonic 
balance from this viewpoint in a much simpler conservative system, the linear plus 
cubic oscillator. We codrm that the rational trial solution can have this desirable 
effect. 

However we can see no a priori reason to reject an alternative method, which 
eliminates low harmonics from the energy equation. We have examined this choice for 
two equations in which the standard method is well documented [6, 171. These are the 
cubic equation (1) and the fifth-power equation. 

. 
' 

dZx/di + kx5= 0. (5) 
We find that at fmt order the standard method gives appreciably better results for the 
cubic equation. Neither method is very good for the Wth-order equation, as compared 
with results using elliptic functions. Not surprisihgly, the two methods converge as we 
go to second and third order, although more slowly for the fifth-power equation than 
for the cubic one. 

Computer algebra packages make it easy to investigate alternative methods for a 
variety of oscillator equations. Most of these packages contain a facility to convert 
automatically from powers and products of sines and cosines to sines and cosines of 
sum and difference angles. We have used Maple and Derive, which have this facility, and 
REDUCE, where the necessary rules can be given by the user. Automatic integration i s  
also provided, although we find some desirable integrals defeat the packages available 
to us. 

2. Equations of the van der Pol type: rationalize or integrate? 

We consider the first-order trial solutions a cos(pt), using the form (3) of the nonlinear 
factor in the damping term in Scott or wc equations. Preliminary multiplication 
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throughout by h g  + 1 gives 

(-p2+ 1) U  COS(^^) ( h u z ~ ~ ~ 2 ( p t )  + 1) 

+hq((h$cosz(pt)+l-g)(-upsin(pr)))=0 (6)  

(2=4(g- l ) /h .  (7) 

from which the coefficient of cos(pt) yields p = 1, while the coefficient of sin(pt) yields 

Now for the Scott equation we have h = l ,  g> 1, while for the wc equation we have 
h=-l,g>l.Soineachcasewehave 

u=&/lg-lI. ( 8 )  

As emphasized by Mickens [l], bifurcation theory confirms that a limit cycle exists for 
g< 1 for the wc equation, and that the amplitude, for small enough 1 -g, rises as 
J( l  -g). But bifurcation theory cannot specify how small this has to be. (The relation- 
ship between harmonic balance and Hopf bifurcation has been investigated by Allwright 
[IS].) When we proceed by integration, we have 

( -p*+ 1)a cos(pt) + (hq/n)I sin(pt) +higher harmonics 

where the integral is 
zir 

I= (1 -g/(hd cos2(pt)+ 1)) ( -up  sin2(pt)) d(pt). 
J O  

For h= 1, p =  1, this is 

I=(n/u)(2gJ(aZ+ 1) -2-2g) 

a=&/(&-1)). 

I =  (n/u)((a’ - 2g) - 2iJ@ - 1)). 

a =&/(dl --E)). 

leading to the conclusion that 

For h =  -1 the integral is 

Since the singularity in the wc equation implies we consider OL L?< 1, this ids to 

(11) 

Noting the restrictions on the g values, both the results (10) and (11) are 

a= 2Jlg(g- 1) I 
which, for g close enough to 1, is still in agreement with bifurcation theory. These 
results can be compared with other analytical approximations, and with numerical 
simulation. For the Scott equation an averaging method 1121 gives 2J(g(g- 1)) as the 
amplitude of a stable Emit cycle (Appendix 2). Murata et ul[14] present an expansion 
in Fourier components, of which the first term has this amplitude. Walker and Connelly 
1151 give the form 2J(g(l -g)) for the amplitude of the stable limit cycle in their model, 
again from an averaging method. 
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Table 1. Limit cycle amplitude for the wc equation. 
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9 4 numerical ZJ(1-9) 2Jk( 1 - 9)) 

0.85 0.1 0.714 0.775 .~ 0.715 
0.85 0.5 0.714 0.775 0.715 
0.95 0.1 0.434 0.447 0.436 
0.95 0.5 0.434 0.447 0.436 

Mickens [ l ]  presents results of numerical solution of the ordinary ditrerential equa- 
tion, for two values of g. Table l compares the amplitudes from his numerical solution 
with the two forms obtained by harmonic balance. The results support the conclusion 
of harmonic balance that the amplitude does not depend on q. They also support the 
form (1 1) of the amplitude rather than the form (8). 

The cz oscillator equation [16] is more elaborate, having three parameters, with 

and has been studied only for large q. Oscillations are possible for g> 1. We can carry 
out the first-order harmonic balance method for (12) in either way. We can express the 
results in terms of y=a'/h2, since h only appears as a scaling factor. From a pre- 
rationalized calculation 

y = J(gz + 12g - 4 )  - g -  2 

while from integration, y satisfies 

y3  5 (1 -4g)y2+ 4g(g - l )y=O. 

From (13), and also from the root y=4g-I-J(8g+l) of (14), the amplitude rises 
as J ( g -  1) for g close to 1. In this case the amplitude derived from integration rises 
more rapidly than &- I) away from g= 1 ; that derived from pie-rationalization rises 
less rapidly. 

Again the use of an averaging method gives the~amplitude in agreement with that 
derived from integration (appendix 2). We have camed out some simulations for q =  
0.2, h=l,  with g in the range 1.1 to 1.5. These indicate that the amplitude increases 
more rapidly than J(g- 1). 

3. Second-order harmonic balance for equations of van der Pol type 

We now examine the second-order corrections to the amplitude, for the Scott and 
wc equations. A remarkable feature of the lowest-order approximation to all equations 
of the van der Pol type (2)  is that the nonlinearity parameter q is not involved. However, 
at second order, with the trial solution 

x = a  cos(pt)+bcos(3pt)+csin(3pt) 
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for the original van der Pol equation, one can obtain a set of results for low q :  

a=2+q2/64 p = I - 2 / 1 6  
b = -34/32 c= -q /4 .  

The reliability of the lowest-order results implicitly depends on the possibility of such 
an expansion in powers of a small parameter. Mickens [I71 has emphasized the need 
to show that second-order amplitudes are small; the corrections at second order to the 
first-order amplitude should also be small. 

We first examine whether q is the appropriate small parameter in the Scott or wc 
equations. With the second-order trial solution for these equations, the terms that arise 
from preliminary rationalization include one which is proportional to 

2 c  sin(pt). (15) 

When we insert an expanded set of parameters: 

a= 2Jlg- 11 + Aq" 
b = Bq' c=C( 

p = 1 + Pq" 

the coefficient of sin(3pt) yields the results= 1. The coefficients of cos(3pt) and cos(pt) 
are consistent with n = r = 2 ,  and do not lead to any conclusion about m. As a result of 
using s= 1, the term (15) expands to include a term 

4(g-  1)ZCq. 

This is the only term of order q.  The lowest-order terms containing a factor q"' have 
fcI, and so we conclude that m=O; the correction to a is independent of q,  rather 
than having $ dependence as for the van der Pol equation. 

However there is another relevant small parameter here, the bifurcation parameter 
1 -g. We find that 

a = 2/11 -g I (1 + k- 1)/2g). 

So as g approaches~l, the correction falls off more rapidly than the first-order value. 
The amplitude c is 

2q11-g13'2/(2g-1) (16) 

in this approximation. The amplitude b and the correction t o p  are more complicated, 

. .  
qZ(i -g)5/2(12&-10g+1) b= 
32(5$-5g+1)(%-1)' 

The expressions (16) to (18) all depend on (small) q in the same manner as for the van 
der Pol equation, and fall oxmore sharply than a as g approaches 1. This is satisfactory. 

However the expressions (16) to (18) all diverge as g approaches 4, in the case of 
the singular wc equation. Now this singular equation can only be meaningful with 
amplitude less than 1. With the form (8) for the first-order amplitude, derived by way 
of preliminary rationalization, this indicates a minimum allowable value g= j, not g= 
3. The divergence in B and P at g= f + 1/42 is also puzzling. I 
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Unfortunately we cannot obtain the integrals needed for the second-order calcula- 
tion by the alternative method; these integrands contain denoininators such as 

1 +acos(pt)+hcos(3pt)+csin(3pt). 

So. we cannot resolve the difliculty by using this method. Our case for integration as 
opposed to preliminary rationalization rests on the better approximation to the ampli- 
tude at first order. 

4. Integral and pre-rationalized treatments for a conservative oscillator 

As a simple illustration of the difference between these versions of the harmonic balance 
method, we consider the equation used by Mickens [2] in advocating the use of harmonic 
balance as a preliminary to a WKB treatment of a quantized conservative oscillator. 
This is 

(19) d2x/dt‘ + n+ kx/( 1 +g.’)’= 0 

corresponding to a potential 

From the form of the potential it is clear that for small g.?? the system becomes a 
harmonic oscillator with spring constant 1 +k, while for large g.‘ it becomes a harmonic 
oscillator with spring constant 1. with the potential augmented by a constant term k/2g, 
not affecting the frequency. 

In lowest order, preliminary rationalization gives 

p2-1=k/(l +3a’g/2+5a42). (20) 

p d =  (2n+ 1)h. (21) 

With this form of trial solution the action quantization equation rduces to the form 

Mickens [Zj substitutes iorp in (2i  j, soives for a, ana evaluates tiieenir~ijj-by-inseitiig 
this amplitude in the potential. He compares it with the energy found [19]’by numerical 
solution of the Schrodinger equation. 

The integral to obtain the cos(pt) term of the nonlinear part of (19) is 
ka(a’g+ 1)-3’’, giving 

p’= 1 +k(a2g+ 1)-3/2. 

Both (20) and (22) behave as expected for a’g small and a’g large. At small d g  (22) 
gives a rather similar form to (20) 

p2 - l=k / ( l+3dg j2+3a42 /8+O(a6g3)  

but the application of (20) in [2] is not confined to small g and a. However, comparison 
of energies derived from the versions (20) and (22) indicates that the~change, while in 
the correct direction, is not substantial. For example, taking g=k=2, n=O, which is 
the case (among those presented in [2]) which gives the largest departure from exact 
values, the energies are 1.48511 from (20), 1.450h from (22) and 1.332h given in [19]. 
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5. Energy equation for cubic and 5fth-power oscillators 

For the trial solution x =a cos(pt) the standard harmonic balance treatment of the cubic 
oscillator (1) (acceleration equation) gives [17]p2= 32k/4.  Eliminating harmonics from 
the energy equation givesp2=dk/2. This is a much worse estimate; the exact solution 
using an elliptic function gives [I71 p2/$k=0.7178. Here, writing the exact solution as 
Acn(r), with period T, we interpret a as A and p as 2z/T. 

To bring out the increasing complexity of the method with increasing order of 
approximation, we present the equations in h s t ,  second and third orders for the cubic 
oscillator. Using acceleration, these are 

3a2k - 4p2 = 0 (23) 
k(3$+ 3ab +6b2) - 4 2  = O  
k(a3+6a2b+3b3)-36bp2=0 (24) 

and 

k(3a3+3db+6a(b2+bd+d2)+3b2d)-4ap2=0 

k(a3+3a2(2b+d)+6abd+3b(b2+2d2))-36bp2=0 (25) 
k(3a2(b+2d) + 3ab2+ 3d(2b2 +d2)) - 100dp2=0 

while using energy they are 

a2k -2p2 = 0 (26) 

(27) 
k(a’+3$b+3ab2+3b3)+ 12bp2-2ap2=0 

k(a3+ 12db+ 6ab2 + 12b3) -48bp2=0 

and 

k(a4+a’(3b+ d )  + 3d(b+d)’+3ab(b2+ bd+2d2) + 3bd(b2+d2)) 

+2p2(-a2+6ab+30bd)=0 

k(a4+ 12a3(b+d)+6a2b(b+2d)+12a(b3+2b2d+2bd2+d3) 

+6bd(b+d))+4ap2(-12b+20d)=0 

k(a’(bf3d) +3db(b+d)+3ad(2b2+bd+d2) 

+ b2(b2+3d2)) -p2(20ad+ 18b2) =O. 

We now go dierctly to the numerical solutions. In table 2 we present values for the 
cubic and fifth-power oscillators (1) and (5). These show how the two methods converge 
as the order increases, more rapidly for the cubic oscillaior than for the fifth-power 
one. For the cubic oscillator the exact solution for the frequency [17] has now to be 
interpreted as 

p2/2k=0.7178(1 + b/a +d/a)’ 

where the quantity in brackets is needed so that the initial amplitude, a+ b +d, can be 
identified with A. Using the third-order estimates of b/a and d/a, we have p2/a2= 
0.7868, so that the third-order result forp2/$k is an excellent approximation. In the 
case of the Mth-power oscillator, with the most rapidly converging method of those 
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Table 2. Comparison of the results found using the acceleration equation and the energy 
equation, for cubic and fifth-power oscillators. 

p 2 / 2 k  b/a d/a 
Cubic oscillator 
Acceleration 1st order 0.75 - - 

2nd 0.7866 0.0448 - 
3rd 0.7869 0.0451 0.0019 

2nd 0.7543 0.0417 - 
3rd 0.7841 0.0448 0.0018 

Energy 1st order ~ 0.5 - - 

p2/a% b/a d/a 
F$th-power oscillator 
Acceleration Istorder 0.625 - - 

2nd 0.7462 0.0665 - 
3rd 0.7566 0.0683 0.0093 

Energy 1st order 0.3125 - - 
2nd 0.6003 ~ 0.0559 - 
3rd 0.7154 0.0656 0.0076 

examined in [6], p 2  lies above 0.9u4k. So in this case neither of OUT calculations is good, 
with the energy one somewhat worse than the acceleration one. 

In these calculations we use the root-hding package cO5bnffrom the NAg library. 
This requires as input the algebraic equations, obtained in FORTRAN form from a 
REDUCE program, and initial estimates of the solutions, for which we use p /u=  1, 
b/a = 0.1, d/u= 0.01. 

6. Conclusions 

Working at first order, we have shown that the use of integration to extract the appropri- 
ate Fourier component from a nonlinear damping term in two equations of the van 
der Pol type, with a denomhator in the nonlinear function, is preferable to the use of 
a preliminary rationalization. The limit cycle amplitude obtained is consistent with 
bifurcation theory in both cases, but fits numerical simulations better if integration is 
used, as well as matching the amplitude obtained by other techniques. In this problem 
we have obtained second-order corrections (for the pre-rationalized method) and exam- 
ined how they depend on the nonlinearity parameter q and the bifurcation parameter 
lg- 1 I. For another oscillator of this general type, we again h d  different results for 
the amplitude using the two methods, away from the immediate vicinity of the bifurca- 
tion. Again the results of the integration method are in better agreement with other 
calculations. 

Comparing results of pre-rationalization and integration in a simple conservative 
oscillator used to illustrate harmonic balance as a tool in quasi-classical quantization, 
the energies calculated are altered in the correct direction when integration is used, but 
not substantially. 

At first order the technique of eliminating the kst-harmonic term from the energy 
gives a poor estimate of the frequency of a cubic oscillator. At second and third order 
the technique gives results that converge towards those of the standard harmonic bal- 
ance method. Results for a fifth-power oscillator are not so satisfactory. 
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Appendix 1. The two methods compared fkom the viewpoint of minimizing 
energy fluctuations 

We wish to compare two harmonic balance second-order methods from the viewpoint 
that the one giving lower fluctuations in the total energy is to be preferred, since any 
fluctuation in the energy is an artefact of the approximation. Note that here we include 
all harmonics present in the energy, not just the cos(2pt) part. We study the 
linear+ cubic oscillator 

d2x/d?+ kx+mx) = 0 (29) 
with energy 

We use the trial solutions 
(dw/dt)’/2+kS/2 +mx4/4. 

x, =cos(pt) +b cos(3pt) 
x2=cos(pt)/(l +ccos(2pt)). 

Using these we have approximately 
p2=  (k+ 1lm/14) 

b=1/(21+32k/m) (33) 

and 
192kZ+281km+100m2 $ = 

3(64k+43m) (34) 
c=-1/(10+ 16klm) 

respectively. We examine a region of (IC, m) space in which these values lead to fluctua- 
tions of a few per cent in the energy (30). The results in Table 3 c o & m  that~the version 
(32)-rational trial solution--can give substantially lower fluctuations in the energy. 

Table 3. Comparison of the fluctuations in the energy (30) of the anharmonic oscillator 
(29) using the trial solutions (31) and (32). for a number of values of k and m. In each 
pair the upper number is E.,-E,.for the solution (31), the lower is &--Em;- for the 
solution (32). 

k m 3j4 1 514 
75 . 98 119 

314 41 105 197 

1 80 103 123 
5 55 122 

85 87 128 
20 18 71 5/4 
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It thus appears that in any application of harmonic balance to conservative systems 
it is wise, if it is practical, to compare standard and rational trial solutions in this way. 
The rational version requires a more elaborate calculation. 

Appendix 2. Averaging compared with harmonic balance 

Consider the equations 

dx/dt=y 

dy/dt+x+qF(x, y)=O 
(35) 

for which Hayashi [ZO] gives a good description of the averaging method. Harmonic 
balance, at lowest order, assumes a solution x=acos(pt), implying y= -up sin(pf), 
and obtains a and p as we have described. The averaging method assumes a solution 
x=a( t )   COS(^), y=b(t) sin(t) and obtains a pair of integrals for da/dt and db/dt, or 
altematively for dr/dt and d6’/dt in a polar coordinate version. The amplitude given 
by this method is the value ro for which dr/dt=O. A non-zero value of d0/dt, using 
ro, ‘can be interpreted as a correction to the estimate p = 1. 

Suppose now that we adopt the particular form 

F(x, dx/dt) =f(.’) &/dt 

as in all the dissipative oscillators treated in this paper, and use the integration version 
of first-order harmonic balance. The integral I(r) representing dr/dt in the averaging 
method has the form I(a, l), where p l ( a , p )  gives the coefficient of sin(pt) in the har- 
monic balance method. Since in this special casep= 1, the amplitude a is the same as 
the amplitude ro. 
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